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In this reading list, I am focusing on a series of statistical models to handle spatial data that
are common in demographic and public health data. Many non-spatial statistical models, including
simple linear regression, assume that data are independently and identically distributed (iid). In
this case, each observation in the data has the same distribution they are mutually independent.
However, for a number of reasons specific to each research topic, we may have reason to believe
that this iid assumption is not valid; this may be especially true when data have a strong spatial
pattern and data may be conditional on neighboring observations. Methods that falsely assume iid
can lead to inflated variance estimates or biased mean estimates if the spatial pattern is strong.

Spatial non-independence can be summarized by Tobler’s first law of geography (Tobler, 1970):
“Everything is related, but close things are more related than far things.” In modern human
populations, people are more likely to work, eat, and socialize near where they live; subsequently
working, eating, and socializing with people who live near them as well. This scale can be very small,
on the neighborhood level (considering work on geography of opportunity) or entire cities, states,
or countries. There are a number of forces at play here: first, a source of unobserved heteogeneity
could be spatially patterned, for example in an environmental risk; second, humans can naturally
cluster together along certain traits and identities, including language, income, and employment
among many others; third, human contact patterns may in turn cause other phenomena to be
spatially patterned, like accents, information dissemination, and disease outbreaks. Often all three,
possible many more, may be present—they may act circularly, be self-reinforcing, or otherwise
create nonseparable dynamics.

Voss argues that all demography is spatial, to a degree. Administrative records are specific to
locales at all levels of resolution; estimations are often implicitly, if not explicitly, about a population
in a certain place (Voss, 2007). Progress in accessible computational techniques like Geographically
Weighted Regression and Spatial Econometrics saw a wild expansion in the 1990s as GIS became a
common tool for data analysis (Matthews and Parker, 2013). All migration studies are necessarily
spatial; people flow from one area to another (Wachter, 2005).

My personal interest in geography as a demographic consideration began with theories of space-
place identity construction. People collectively assign meaning to space—for example, (-37°, 122°)—
turning it into a place—Berkeley, CA. These place-based boundaries (sometimes called ‘platial’ by
Michael Goodchild, as opposed to spatial boundaries, like coastlines) may ultimately be arbitrary,
their effect is nonetheless tangible (Goodchild, 2000). Tax funding, schools, social services, and legal
jurisdiction all behave according political boundaries; neighborhood identity and culture becomes
associated with these tangibles in combination with the compositional demography of the people
who live there. This segregation is often self-reinforcing. I am interested now in how health inequal-
ities are spatially patterned: how mortality, disease incidence, underlying health are geographically



distributed. This is elaborated more in my other exam in public health in demography.

The models presented in brief here and during my Qualifying Exam focus on ‘polygon’ data (like
mortality rates in counties). Most geostatistical work focuses on ‘point’ data; while mortality and
health phenomena are technically point referenced (occur in a single location with coordinates), the
data I will mostly be working with are often summarized to the administrative level. As such, I
have chosen to focus on hierarchical models, autoregressive distributions, spatial econometrics, and
space-time models, with their applications in disease mapping.

1 Spatial Autocorrelation and the Neighborhood Matrix

Spatial Autocorrelation refers to a property of spatial data wherein nearby observations may have
similar values. This is sometimes seen as the ‘clumpiness’ of the data. Autocorrelation can be
calculated as a global measure, showing how all observations either are or aren’t autocorrelated, or
locally, considering only the neighboring values. The latter is often used in cluster analysis, such as
Local Indicators of Spatial Association (developed by Haining, but elaborated in Banerjee, Carlin,
and Gelfand (2003) and Haining (2004)).

The most common estimator of autocorrelation is Moran’s I:
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The numerator represents a weighted sum of pairwise deviations from the mean; the denomina-
tor the weighted squared deviations from the mean. Commonly, weights are inverse-distances. A
Moran’s I value equal to 0 indicates no autocorrelation; one can conduct a hypothesis test. Positive
values of Moran’s I indicate positive autocorrelation (assimilation, or clumpiness); negative values
indicate dispersion. In determining if data warrant a spatial model, it is often recom-
mended to run the model without any spatial effects and conduct a hypothesis test on
the autocorrelation of the residuals; if Moran’s I of residuals is significantly different
from 0, a spatial model is justified.

Critical in any spatial statistcal work is the concept of the neighborhood matrix: a mathematical
representation of geographic adjacency. For example, this 3x3 grid could be representing by binary
neighborhood matrix W:
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A symmetric binary matrix like this is most common for representing adjaceny, but can easily be
extended to include reciprocal distance weights, higher-order neighbors, or measures of connectivity
that are not strict adjacency (for example transit networks). While estimates will change between
different matrices W, the following distributional properties remain the same.



2 Autoregressive Models

There are two classes of autoregressive models: conditionally autoregressive (CAR) and simulta-
neously autoregressive (SAR) models. The CAR model, also called the BYM model after authors
Besag, York, and Mollie, is specified for each geographical unit as a normal distribution with ex-
pectation equal to the average of its neighbors:
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Where ¢; is a unit, the set ¢;j~; indicates the neighbors of i, n; is the number of neighbors,
and 72 is a specified variance. This model is conditionally specified for each geographic unit. This
distribution is improper, however, meaning that it cannot be integrated to a valid probability
distribution; as such, it can only be used as a prior in a Bayesian model . The CAR model is
known to show poor performance when spatial autocorrelation is not very strong, otherwise it will
oversmooth random variation in the data. Work by Cressie (1993) and Leroux attempt to modify
the CAR model to improve performance. The Leroux model (Leroux, 2000) has been shown through
simulation to be superior, and is employed by many in disease mapping (Lee, 2011). The CAR
model can also be extended to poisson, binomial, and logistic distributions as well (Haining, 2004).

Some versions of the CAR model include a parameter for autocorrelation, usually p. When this
parameter is included, it is possible for the CAR model to be specified properly as a valid probability
distribution. In this way it can be used in a frequentist model (Dormann, 2007) Banerjee, Carlin,
and Gelfand (BCG) caution against this for a number of reasons. First, p does not map clearly
onto any other measures of spatial autocorrelation, like Moran’s I or Geary’s C. Instead it describes
a weighted sum of the grand mean of all areas and the local mean of the neighbors, weighted by
p, which can lead the researcher to incorrect conclusions. BCG recommends to just use the
CAR model as a prior for random effects in a Bayesian model. A simple, two-level model
for disease counts with CAR random effects could take the form:
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Where Y is the counts of disease, which are assumed the be Poisson distributed with relative
risk ¢;; 0; is unstructured error and ¢ is equivalent to the distribution in equation (2) (BCG, p
153).

The SAR model is more straightforward. Beginning with neighborhood matrix W, the SAR
distribution has general form:

Y ~ N(p,o*[(I = W)(I = W)T]™) (7)

Computation of SAR models can be complex due to matrix inversion, but the theory behind them
is simpler. They do not suffer from impropriety like CAR models and can be used in MLE or

n order for this to be valid, p must be bounded by 1/Amaaz < p < 1/Amin, where Amaz and Apip are the largest
and smallest eigenvalues of W, respectively. This guarantees that (I — pW) is positive semi-definite (BCG p. 81).



regression models (see next section for examples). SAR models tend to pick up on more ‘global’
autocorrelation that CAR models, which are more ‘local’ in their sensitivity?. As such, deciding
between these two main families of models depends on Bayesian or Frequentist framework and the
local or globally autocorrelative nature of the data.

3 Spatial Econometrics and Spatial Regression

Spatial Econometrics refers to a series of regression models that attempt to remove autocorrelation
from variables, pioneered by Luc Anselin. Confusingly, sometimes spatial econometric models are
called Spatially Auto Regressive models (SAR). This is the most common use case of the SAR
distribution

Beginning by considering a simple general linear model (GLM) with no spatial effects:

Y =8X +u

Autocorrelation can be present in any combination of the Y, X, and error terms. The idea is
to incorporate the neighborhood matrix W as an adjustment factor, or ‘spatial multiplier’, to the
autocorrelated variable in order to remove any spatial effect. In other words, values are removed
(either through subtraction or multiplication) according to their spatial adjacency structure.

In choosing which model is most appropriate, there are two main considerations: first, if the
spatial heterogeneity is observed or unobserved; second, if the effects of externalities (spillovers, or
perturbences to the system) are felt locally or globally. Addressing the latter point first: global
specifications assume that every location is related, but near locations are more related; local models
only assume the first-order neighbors are related. Unobserved spatial heterogeneity is accounted for
with spatial multipliers in the error term; observed heterogeneity prompts use of a spatially lagged
X model.

Anselin (2003), Golgher and Voss (2016), and Kissling and Carl (2007) elaborate on a number of
models, but I will only outline two here: the Spatial Durbin model and the Spatial Moving Average
(SMA) model. The Spatial Durbin model assumes global autocorrelation in the error terms (also
called the SAR Error model, for example by Dormann). Anselin gives the examples of modeling
the effect of air quality on house prices where only proxy measures of air quality are available, such
as vehicle traffic or manufacturing (a hedonic model). The spatial Durbin model has the form:
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In the first form of the model, the spatial multiplier (I — AW)~! can be thought of as giving
structure to the the error term w. This term is SAR distributed. Through some rearranging, the
more common expanded form is derived. There are two spatial multipliers in the expanded form of
the model: first, term AWy present on the right hand side ‘removes’ a proportion of neighboring
values from the left hand side of the equation; second, term AW X subtracts a proportion of
neighboring values from the X variables. An important note is that this error model can be defined
equivalently in terms of X and Y variables, as the first and second lines above are equivalent.

2Consider the variance-covariance matrices for the two distributions. The proper CAR variance is specified as
var(¢) = 72(I — W)~ where the SAR variance is var(¢) = o?[(I — W)(I — W)T]~1. Since the SAR variance
involves multiplying W by its transpose, the structure of the variance is more complex than in the CAR model.



The spatial moving average model, used for local correlation, is defined more straightforwardly:
y=Xp+u+~yWu

Anselin gives a use-case here of if heterogeneity in house prices was unmodeled and also did not
affect more than two houses away. The difference between the SMA model and the Spatial Durbin
model lies in the in the spatial multiplier: the SMA multipler yWwu affects only the adjacencies
represented in W and is CAR distributed, but the Durbin multiplier (I —AW)~!u has more complex
global dynamics due to the matrix inversion.

4 Geographically Weighted Regresison and other models

Geographically Weighted Regression (GWR; Fotheringham, 1998) is a fairly straightforward tech-
nique popular in social science disciplines (Matthews and Yang, 2012). GWR is analogous to a
moving window regression in time-series analysis. Essentially, for each geographic area, a regres-
sion model is fit to all of the observations within a certain distance of that observation. The set of
parameters estimated are assigned to that specific area; parameters are estimated for the next area
and it’s neighbors, and so on. The difficulty with GWR lies in determining how far that distance
should be; this is called the ‘bandwidth.” It can be difficult to choose bandwidth a priori, and as a
result bandwidth selection is often performed as part of model selection.

Dormann et al 2013, in addition to SAR models, discuss Spatial Eigenvector Mapping (SEVM)
and GAMs in addition to autoregressive and other GLM frameworks. SEVM works by decomposing
a matrix of associated values into principal components. The main advantage of SEVM is that it
does not assume stationary® of the data, like the autoregressive models do; however, it can be
computationally prohibitive on even medium-size datasets. These models seem to perform well
under simulation, although with larger confidence intervals than autoregressive models. GAMs as
well do not require stationarity.

Best et al 2005 additionally discuss partition models, which split the data into clusters where
local trends can be analyzed using the Potts model. They also describe a gamma moving average
model, which unlike the SMA model described above, attempts to fit a smoothing function to the
data.

5 Lawson et al 2012: Bayesian 2-Stage Space-Time Mixture
Modeling with Spatial Misalignment of the Exposure in
Small Area Health Data

Lawson et al present a “two-stage” space-time mixture model for estimating the association be-
tween air pollution (PM2.5) and asthma hospitalizations. Although they come to a contradictory
conclusion—more air pollution leads to a lower asthma hospitalization rate, inconsistent with most
literature on the topic—other models they test give similar results on their dataset, suggesting
the discrepency comes from the data rather than from the model. I particularly like this article

30ne assumption made by all autoregressive models is that the distribution is stationary over the area. This is
often relaxed to say that the variance follows some well-defined deterministic function. Non-parametric smoothing
and non-stationary approaches are not addressed here, but are discussed in BCG.



because it brings together a number of techniques I have studied: hierarchical and autoregressive
models; spatial, temporal, and spatio-temporal random effects models; multivariate spatial distri-
butions; and disease mapping. They also address spatial misalignment: in this study, exposure (air
pollution) is measured at point locations and outcome (asthma hospitalizations) is recorded at the
county administrative level. I find their comparison models, especially the independent space-time
random effects model (model 2), to be a useful baseline in justifying the more complex model.

A concise overview of the model: the two-stage space-time mixture model follows a number
of ordered steps. Initially, space and time trends of PM2.5 data collected at a series of points
are aggregated to the county levels. Next, the (county, year) specific relative risk is regressed on
an intercept term, the PM2.5 counts, and socioeconomic covariates. This is the first stage. In
the second stage, the residuals from the first stage are decomposed into a series of latent temporal
components; coeflicients on these temporal components are estimated as a Multivariate Intrinsically
AutoRegressive (MIAR) distribution, a multivariate analogue of the CAR model discussed earlier.
The model is then re-estimated, using these weighted components as adjustments. This procedure
can be summarized as:

Yij ~ Pois(e;;0;5) (8)

Where y;; is the count of asthma hospitalizations in county 7 in year j, e;; is the expected number
of cases, and 0;; is the relative risk. * The first stage is then:

log(0i5) = o + Zivij + X545 (9)
Where « is an intercept, Z;; is the estimated PM2.5 count with coefficient v;;, X and B are
socioeconomic values and coeflicients, respectively. In the second stage, the residuals 7;; are assumed
to follow:

#3101, Yij» 45 ~ N(aw + Aij, 07, ) (10)

Where «, is an intercept and A;; is a space-time random effect, representing space-time patterns
in the residuals. A;; is then decomposed into a series of L weighted temporal component trends®:

L
A = ZwilXil (11)
=1

these weights w are assumed to follow an MIAR distribution, which specifies all components for
a county as normally distributed at the average of their neighbors. These estimated weights are
plugged back into the model equation (9):

L
log(0;) = a0 + Z5;vi; + X358 + Y bk + i (12)
=1

4Banerjee, Carlin, and Gelfand discuss that using expected cases in the same line as observed counts violates an
endogeneity assumption: the expected number of counts is a fictitious quantity in referece to the observed. They
recommend a model that follows y;; ~ Pois(P;j - j1;5), where P;; is the county-year specific population at risk and
iij is the asthma hospitalization rate, which is to be estimated in the following steps. Alexander et al (2017) do the
same in their Bayesian mortality estimation model.

51 skipped a step here; an extensive weight-normalizing step is used to filter out unused temporal components. The
authors set L to be a high number of components and then let the model select the optimal number of components.



Where 7;; is unstructured error.

This paper’s main contribution to the literature is on this second stage, where the residuals are
decomposed into space-time trends and used as adjustments in re-estimating the model. Banerjee,
Carlin, and Gelfand (2003) and Cressie and Wikle (2011) give numerous examples of disease map-
ping that focus on proper distributional forms for equation (9), using CAR or other spatial priors
(the Leroux (2000) model seems to be preferred). Lawson et al’s model outperforms this approach
in simulation (in Lawson’s paper, this is the second model, referenced as Knorr-Held (2000)).

The MIAR distribution, also called the MCAR (multivariate conditionally autoregressive) dis-
tribution, suffers from an estimation issue not addressed by the authors. In brief, the MIAR
distribution represents an entire vector of values, each of which is normally distributed at the aver-
age of its neighbors. This technique would be used to model, for example, multiple types of cancer
jointly through a CAR model. Jin, Banerjee, and Carlin (2007) note that in coding this model
in a Bayesian estimation software like BUGS or JAGS, this vector of variables has to be given an
arbitrary order, which can affect the posterior estimates. They, along with Banerjee, Carlin, and
Gelfand (2003), recommend more generalized models that lack this arbitrary ordering.

This paper demonstrates a ‘change-of-support,” where data are collected at two different spatial
resolutions. In this situation, going from point data where PM2.5 levels are measured to counties
is a simple integration. the BCG and Haining books discus other situations where it may be
necessary to re-aggregate data. This is a common problem in spatial analysis, especially with
different data sources; while administrative data (mortality, socioeconomics) are often at county or
state levels, ecological or environmental data are often recorded at point locations. Sometimes data
are collected at different, non-nesting levels; for example, zip codes frequently do not align with
municipal boundaries and commonly overlap areas.

The authors compare their new model with a series of competitors: a simple Poisson model,
a space-time random effects model, and a mixture model. All of these models yield a negative
coefficient for PM2.5, indicating that the data variables chosen are responsible for this contradictory
result instead of the modeling technique. They remark that past medical research often indicates
a positive association between PM2.5 and asthma. It is possible that the socioeconomic variables
they control for (race, median income, unemployment rate) are co-linear with and masking the tree
effect of PM2.5 rates.

I am interested in extending Alexander, Zagheni, and Barbieri’s (2017) Bayesian mortality
model to include spatial effects in addition to temporal effects. Their model considers age, year,
and location patterns in mortality; however, their hierarchical model considers each geographic
subunit to be iid within the higher level (for example, counties within states). One option is to put
a CAR prior on county error terms; however, this would fail to incorporate space-time interactions.
Using Lawson et al’s approach could provide one option for estimating spatio-temporal trends. They
argue, in agreement with Wakefield et al (2019) and Wikle et al (1998) that space and time need
to be considered jointly as opposed to additively, with separate random effects for space and time.
Especially in a disease context, where diseases have an ordered temporal process of transmission to
people in their proximity, considering space and time as a single process is necessary at a fine areal
and temporal resolution.



